
A-A7 III RD4S(LAER POLYTECHNdIC INST TRtOY NY W(T OF NATHEMAT--CTC F/S l2/1
ASYMPTOTIC AND NMERICAL METHODS FORi VECTOR SYSTENS OF SINSULARt-EYC (U)
APR 8 Ji E FLA)ENTYP f E O'NALLEY NOOOI*-SI-K-O56

INCLA SSFI AFOSTR -89-0OS6 NL

EhI2J



rAEM&E-.TR- 82 -0556

74 ASYMPTOTIC AND NUMERICAL METHODS FOR VECrop SYSFEMS

OF SINGULARLY-PERTURBnD BOUND1RY VALUE PROBLEMS*

Joseph E. Flaherty
Department of Mathematical Sciences

Rensselaer Polytechnic Institute
Troy, NY 12181

and

U.S. Army Armament Research and Development Command

CjLarge Caliber Weapon SystemsLbrtr
cc Benet Weapons Laboratory

Watervliet, Nh 12189

and .

Robert E. O'Malley, Jr.
Department of Mathematical Sciences

Rensselaer Polytechnic Institute
Troy, NY 12181 -Now

ABSTRACT.N-1 Procedures are developed for constructing asymptotic solutions
for certain nonlinear singularly-perturbed vector two-point boundary value
problems having boundary layers at one or both end points. The asymptotic
approximations are generated numerically and can either be used as is or to
furnish a two-point boundary value code (e.g. COLSYS) with an initial approx-
imation and a nonuniform computational mesh. The procedures are applied to
several examples involving the deformation of nonlinear elastic beams.

1. INTRODUCTION. We consider singularly-perturbed two-point houndaty
value problems for nonlinear vector systems of the form

x = f(x,y,t,c) , cY - g(x,y,t,c) , 0 < t < 1 (la,b)

a(x(O),y(O),e) = 0 , b(x(1),y(1),c) - 0 (Ic,d)

where x, y, a, and b are vectors of dimension m, n, q, and r = m + n - q,
respectively. We seek to find limiting solutions of problem (1) as the small
positive parameter e tends to zero; however, to do this in complete generality

ZOO is very difficult and beyond the grasp of our current understanding. Thus, we
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simplify problem (1) considerably by assuming, in addition to natural

smoothness hypothesis, that (i) g, a, and b are linear functions of the fast

variable y, i.e.

g(x,y,t,C) - g(.,t,c) + G2 (x,t,C)y (2a)

a(x(O),y(O),C) - al(x(O),C) + A2(x(O),C)y(O) (2b)

b(x(1),y(1),C) = bl(x(l),t) + B2 (x(1),C)y(1) (2c)

(ii) that G2 (x,t,c) has a hyperbolic splitting with k > 0 stable elgenvalues

and n - k > 0 unstable eigenvalues for all x and 0 4 t 4 1, and (iii) that q >

k and r > n- k.

With the assumed hyperbolic splitting, we w-ould expect y to vary rapidly

relative to (the slow vector) x in narrow boundary layer regions near both t =

0 and 1. We thus seek limiting solutions having the form

x(t,C) = X(t) + O(C) , y(t,C) = Y(t) + P(T) + v(O) + O(C) (3a,b)

where the initial layer correction W(T) and the terminal layer correction

v(a), respectively, decay to zero as the stretched vdriable

= t/c or o - (1-t)/,. (4a,b)

tend to infinity. The limiting solution X(t), Y(t) within 0 < t < I must

necessarily satisfy the reduced system

X = f(X,Y,t,O) , 0 = g(X,Y,t,0) (5a,b)

Because G2 is everywhere nonsingular, we can use Eqs. (2a) and (5b) to

determine

Y(t) = -G2-
1(X,t,0)g l(X,t,()) (6)

in a locally unique way, and there reiuains the rth order nonlinear differen-
tial system (Eq. (5a)) for determining X(t).

In order to completely specify the reduced solution we must prescribe m

boundary conditions for equations (5a). We do this by providing a
."cancellation law" which selects a combination of'q-k initial conditions (Eq.
(2b)) and of r - n + k terminal conditions (Eq. (2c)) to be satisfied by X and
Y. In Section 2 we present a numerical procedure for determining the boundary
conditions for the reduced system that uses an orthogonal inatrix E(x,t) to
reduce the matrix G2(X(t),t,0) to a block tridiagonal form so that the stable
and unstable eigenspaces may be separated. The boundary layer corrections

JI(T) and v(o) in Eqs. (3) compensate for the cancelled initial and terminal
conditions, respectively, and they can be determined once X(t) has been
computed (cf. Section 2). This process avoids omplicated matching

procedures.-
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In Section 3 we discuss a numerical procedure for determining the
asymptotic approximation (Eq. (3)) which uses the general purpose two-point
boundary value code COLSYS to solve the reduced problem and then adds numeri-
cal approximations to the boundary layer corrections. This approximation is
considerably less expensive to obtain than solving the full stiff problem
numerically and it has the advantage of improving in accuracy, without any
additional computational cost, as the small parameter c tends to zero. H6w-
ever, when e is only moderately small our asymptotic approximation may not be
sufficiently accurate for some purposes, so we have developed a procedure (cf.
Section 3) that generates an improved solution by using COLSYS to solve the
complete problem (Eqs. (1) and (2)) with our asymptotic approximation as an
initial guess. In order for this approach to succeed we must also provide
COLSYS with an initial nonuniform mesh that is appropriately graded in the
boundary layers (cf. Ascher and WeIss (Pef. 2)) a:nd w: ive a. al!sori(hm for
constructing such a mesh in Sect i01 ". 1 ' i ,ur proccdure d,,ci fl': appear to
be optimal, we show by an example involving: the deformatior of a nunlinear
elastic beam (cf. Section 4) that it does offer soMe advantage over the more
standard approach of continuation in c, where one starts with a large value of
e (e.g. c = 1) and a crude initial guess and reduces c in steps so that the
mesh is gradually concentrated into boundary layer regions.

We close Section 4 with a second nonlinear beam example that is beyond
the capabilities of our present miethods because the matrL_: 02 is a function of
y. Flaherty and O'Mlalley (Ref. 6) analyzed this problem and showed that its
solution becomes unbounded as c - ). We include the nuerical solution of
this problem in this paper in order to show one of the mar.v challenging
effects that can occur with singularly-perturhed problems.

Finally, in Section 5 we discuss our results and present some suggestions
for future investigations.

2. ASYMPTOTIC APPROXIMATION. In order to calculate the boundary
conditions for the reduced problem (Eqs. (5a) and (6)) and the boundary layer
corrections .(T) and v(o) we calculate the Schur decompositLion of the matrix
G2 at t = 0 and t = 1. In particular, at t 0 we find an orthogonal matrix
E(x(0)) such that

G2 (x(O),0,O)E(x(0)) = E(x(O)) (7)
0 T+(x(O))

where T_ is k x k and upper triangular u'ith the stable eigenvalues of G2, and
T+ is upper triangular with the n-k unstable eigenvalues of G2. The
decomposition (Eq. (7)) can often he obtained analytically; however, when this
is not possible or practical it can be determined numerically by using the QR
algorithm (cf. Golub and Wilkinson (Ref. 7) and Ruhe (Ref. 9) for specific
procedures).



We partition E after its kth column as

E - E_ E-1 (8)

and note that E_ spans the stable eigenspace of G2 at t - 0 and

P - E -E -_ T ( 9 )

is a projection onto this eigenspace.

Near t - 0, we assume that the terminal layer correction v is negligible,
substitute the asymptotic approximation (Eq. (3)) into the differential
equations "Eqs. (la,b)), use the reduced system (Eq. (5)), and retain only the
leading order terms to find that P(T) satisfies the conditionally stable

system

dP/dT- G2(0)1 (10)

where (here and below) we use the argument t to denote conditions evaluated at
x(t) - X(t), t, and c - 0, e.g.,

G2(0) := G2(X(0),O,0) (11)

Integrating Eq. (10)
G2 (0) T

P(T) = e P(O) (12)

We require that VI(T) decays as T increases and this will be the case provided

that p(0) is in the stable eigenspace of G2(0); thus, using Eq. (9) we require

P(0) - P(0)P(O) - E_(O)ET(0)u(0) (13)

Using Eqs. (3), (1.3), and (2b) in Eq. (Ib) we find that the limiting
initial conditions have the form

al(O) + A2(0) [Y(0) + E-(O)E-T(0)1j(0)] _ 0 (14)

We assume that A2 (0)E_(0) has its maximal rank k and construct a q x q matrix

LT = [tT L T ]  (15a)

that reduces it to row echelon form, i.e.,

A2 (0)E-.(0) = (15b)
0

where V- is k x k and nonsingular. Multiplying Eq. (14) by L and using Eqs.
(13) and (15) gives the initial l3yer jump and the q-k initial conditions for
the reduced problem, respectively, as



pCO) -- (O)V--1L.Ia1(X(O),O) + AnCXCO),0)Y(O)J (16a)

and
O(XO)) :- L-fal(X(0),O) + A2(X(O),O)Y(O)] - 0 .(16b)

We find the terminal layer jump and the r - (n-k) terminal conditiods for
the reduced problem in an analogous fashion with the exception that we define
E(x(l)) such that

TIx-- UX()
G2(x(1),1,0)E(xl)) - E(x(1)) (17)

0 T-.(x(l))

which we 'partition after its (n-K)Lh column-v .,i

E - [F- E+1 (18)

In parallel with Eqs. (7) and (8), the matrices T-, T4, and E., contain the k
stable elgenvalues, the n-k unstable elgenvalues, and span the unstable cigen-
space, respectively, of G2 at t = 1. Our reasons for switching the positions
of the matrices containing the stable and unstable elgenvalue s of G2 is that
there is no simple and stable Computational procedure fo;r finding a set of
vectors that span a given subspace and are not in the leading columns of an
orthogonal matrix like E (cf. (rolub and Wilkinson (Ref. 7)).

Now, following the procedure that we used for the initial layer, we find
that the terminal layer correction satisfies

G2( 1)0
V()- C v(O) (19)

In order for v(o) to decay as a increases we require v(a) to be in the
unstable eigen'space of G0); thus, we take

v(0) -Q(1)v(O) - E+I),.-T(l)v(O) (20)

where Q is a projection onto the (n-k) dimensional unstable elgenspace of
02(1).

We assume that 32(1)E+(1) has its max:imal rank n-k and find a r x r
mia tr ix

RT - [R+T 1) T] (21a)

that reduces it to the row echelon form

R9. B2(1)E. 4.(l) V+' (21b)

R+ 0



where V+ is (n-k) x (n-k) and nonsingular. Multiplying Eq. (id) by R, using
Eqs. (2c), (3), (20), and (21), and retaining only the leading order terms we
find the terminal layer jump and the r -(n-k) terminal conditions for the
reduced problem, respectively, as

v(O) - -E+(1)V+-R+bl(X(l),O) + B2 (X(1),O)Y(1)J (22a)

and

T(x(l)) :- R+IbI(X(l),O) + B2(X(1),O)Y(1)] - 0 (22b)

In the interest of brevity, we have omitted several details of our
construction and have not attempted to justifv the asymptotic validity of our
procedure. These topics will be the subject of a forthcomi!!-, paper by
O'Malley and Flaherty (Ref. 8).

3. NUMERICAL PROCEDURE. Our computational procedure consists of first
solving the reduced problem (cf. Eqs. (5a), (6), (16b), and (22b)) numerically
and then adding any boundary layer corrections. Since the reduced problem is
not stiff we can use any good code for two-point boundary value problems (cf.
Childs et al. (Ref. 3)) and we have chosen to use the collocation code COLSYS
of A cher, Christiansen, and Russell (Ref. 1). -.

Since the reduced problem is generally nonlinear and since COLSYS solves
nonlinear problems using a damped Newton method we have to supply formulas for
evaluating the Jacobians of f, Y, 0, and T with respect to X. We do this by
providing analytical formulas for these Jacobians that neglect the influence
of the derivatives of E, L, R, and G2. This procedure has not failed on any
of our examples; however, an alternate possibility would be to approximate the
Jacobians by finite differences.

We start the Newton iteration with a uniform mesh and the default initial
guess x(O)(t) for X(t) that is provided by COLSYS and calculate successive
approximations X(P)(t) until convergence is attained. At each iteration step
we calculate an approximation E(P)(t) to E(t) for t = 0 and I as the Schur
decomposition of G2(X(P)(t),t,O). In the examples of Section 4 we used
analytical formulas for E rather than the numerical procedures of Golub and
Wilkinson (Ref. 7) or Ruhe (Ref. 9). Finally L(P) and R(P) are obtained
using Gaussian elimination to row reduce A2(XP)(O),O)E-(P)(0) and
B2(XkP)(1),O)E+(P)(1), respectively.

When the above procedure converges ve calculate boundary layer
corrections P(T) and v(o), for a given value of c, using Eqs. (12), (16a),
(19), and (22a), and add these to the reduced solution in order to get the
0(c) asymptotic approximation (Eq. (3)). For moderately small values of c

this approximation may not provide a sufficiently accurate representation of
the solution and, in this case, we use it as an initial guess to COLSYS and
solve the complete problem (Eq. (1)). Unfortunately, this procedure will fail
unless we also provide COLSYS with an initial nonuniform partition

I:- {0- to < tI < ... < tN -} (23)



that is appropriately graded within the boundary layers. We seek to find w so

that the pointwise error satisfies

I e(ti)J 4 6(1 + j1u(ti)JI) , i 1,2,...,N-1 (24)

where 6 is a prescribed tolerance, uT := [xT,yT], e is the difference betwben

u and its collocation approximation, and

llu(tiIlI :- max luj(ti)I (25)
lj4m+n

We have based our condition for determining r on a pointwise error criteria

since this seemed to work better in practice than a global criteria. This is
somewhat surprising since COLSYS uses a global error criteria to select a
mesh.

We assume that the final partition selected by COLSYS to solve the

reduced problem satisfies equation (24) outside of boundary layer regions and
we seek to refine it within the boundary layers. We further assume that
derivatives of u can adequately be replaced by either p(T) or v(a) in the left
or right boundary layer, respectively.

This problem was studied by Ascher and Weiss (Ref. 27'who showed that,
Eq. (24) could be approximately satisfied in the left bouadary layer by
choosing subinterval lengths as

ti  - ti- l  (--)[ -- - - -- - - - (26)a - c l l I 1(t i- 1) I

for collocation at the image of k Causs-Legendre points per subinterval. 4ere
c is a numerical constant and a_ is the magnitude of the largest diagonal
element of T_(X(O)). A similar formula can be obtained for selecting
subinterval lengths in the right boundary layer.

Starting with i = 1 we use Eq. (26) to generate a partition until we
either reach t = 1/2 or a point where a subinterval length selected by Eq.
(26) is larger than that used by COLSYS to solve the reduced problem. We then
repeat the procedure in the right boundary layer.

We have written a computer code called SPCOL that implements the
algorithms that are described in this section; thug, it (i) uses COLSYS to
solve the reduced problem, (ii) calculates and adds appropriate boundary layer
corrections to the reduced problem, and (iii) (optionally) suggests a mesh
that can b! used by COLSYS to solve the complete problem.

4. EXAMPLES. In order to appraise the performance of SPCOL we have
applied it to several examples involving the deformation of a nonlinear
elastic beam which is resting on a nonlinear elastic foundation and is
subjected to the combined action of a horizontal end thrust P and a lateral
load p(x,t) per unit length (cf. Figure 1). This problem is discussed and
analyzed in detail in Flaherty and O'Malley (Ref. 6) and herein we only
present the governing equations, which in dimensionless form are



xl - cos x , x2 - sin x3 , x3 - Yl (27a,b,c)

CYl -Y2 ,C 2 = (X 2-P) cos X3 - T y1 , (27d,e)

where

T = sec x3 + CY2 tan x3 (27f)

The slow variables (xl,x 2 ) and x3 represent the Cartesian coordinates and the
tangent angle of a material particle on the centerline of the beam that was at

the Cartesian location (t,O) in the undeformed sLate. The fast variables yl
and Y2 are the internal bending moment and transverse shear force,

respectively (cf. Figure 1). Finally, the small parameter is

C2= EI/PL2 , (28)

where E1 is the flexural rigidity and L is the length of the beam; thus, our
beam is much stronger in extension than it is in bending.

This example does not precisely fit out hypotheses since the axial force

T is a function of the fast variable Y2 and, thus, G2 also depends on y.
However, our theory and methods will still apply as long as y remains bounded
and 1x3 1 < w/2 as e b 0. In order to illustrate the diverse behaviors that

can occur when y either does or does not remain bounded as C + 0 we present
solutions for two problems both having X = p = 1 and which differ only in
their boundary conditions. Some additional examples are presented in Flaherty
and 0'Malley (Refs. 6 and 8).

In our first example we take the boundary conditions as

xl(0) = 0 , -10x2(0) + Y2( 0 ) = 0 , -x3(0) + 10yI( 0 ) = 0
(29)

10x 2(1) + Y2(1) 
= 0 , 10x3(1) + Yi(1) = 0

These supports correspond the a beam that is almost simply supported at t - 0
and almost clamped at t - 1. However, perhaps due to friction, there is some
coupling between lateral and rotational effects at the supports.

As we shall see, y remains bounded in this example so our methods are
applicable. The orthogonal matrix

E(x(0)) = (l+a2)- l/2 (30a)
a 1

where a2 = sec x3(0) C(30b)

_ii



reduces

0 -1
G2 (x(O),O,O) = (31)

to the Schur form given by equation (7) at L - 0 and ET will reduce
G2(x(1),1,O) to the form given by Eq. (17) at t 1.

We solved this problem in two ways: (i) using COLSYS to solve the
complete problem (Eqs. (27) and (29)) with continuation from a large to a
small value of C and (ii) using our code S"COL to compute an initial

-asymptotic approximation and to reco.nmenl a nnuniform ,Ih a,-d tusing this
with COLSYS to calculate an improved solution. Ul1 calculations were
performed in double precision on an IBM 3033 coinput-r, used two collocation
points per subinterval, and set the error tolerance (cf. Eq. (24)) at 10-6

for slow variables and 10- 3 for fast variables.

Our results for the normalized CP times and the number of subintervals
(NSUB) that are either used by COLSYS or recommended by SPCOL are shown in
Tables 1 and 2 for continuation in E and our methods, respectively. Differ-
ences between our initial asymptotic approximation and the final solution
obtained by COLSYS are shown for x3 and Y2 at t - 0 and 1 in Table 3. We see
that the differences decrease like 0(E) as expected. Differerzes that are
recorded as zero are less than I0- 8. Finally, we exhibit solutions for x2,
x3 , yl, and Y2 in Figure 2.

The results reported in Tables 1 and 2 need some additional explanation.
The number of subintervals and CP times used with continuation depended heav-
ily on the c sequence that was used. The results in Table I are about the
best insofar as they gave the smallest total CP time for the sequence. In
addition, COLSYS relies on the difference between solutions that are computed
on two different partitions in order to estimate local errors. Thus, at a
minimum, COLSYS would always double our suggested iesh. This is apparent in
the results listed under the heading of "COLSYS Correction No. I" in Table 2.
In some sense these results are encouraging insofar as they indicate that our
mesh selection strategy is doing about as well as it can, at least for
E 4 10-2. However, it seems that fewer points should be necessary, so we
tried giving COLSYS an initial mesh that consisted of every other point of our
recommended mesh. This is clearly a risky strategy since collocation at the
Gauss-Legendre points is known to be unstable unless the mesh is sufficiently
fine in the boundary layers (cf. Ascher and Weiss (Ref. 2)). Our results
using this are reported under the heading of "COLSYS Correction No. 2" in
Table 2. Some improvement is noted for E > 10-U; however, COLSYS failed to
find a solution (within our prescribed limitations) when c = 10-8.

In our second example we use the boundary conditions

xl(O) - 0 , -x2(O) + tv2 (O) = 0 , -x3(O) + E2 yl(0) - 0
(32)

x2 (1) + CY2(1) 0 , x3(1) + E2 y1(I) - 0

Ie-.- I - I - - - .. .. ..-. . - '



TABLE 1. NONLINEAR ELASTICALLY SUPPORTED BEAM. !,PIMBER OF SUBINTERVALS (NSUB)
AND CP TIMES USED TO SOLVE THE PROBLEM BY COLSYS WITH CONTINUATION
IN C. THE TOTAL CP IS THE ACCUMULATED TIME FOR THE c SEQUENCE.

NSUB CP Total CP

10-i 80 8.0 8.0
10-2 78 9.0 17.0

10 - 4  78 19.5 36.5

10- 6  156 44.5 81.0
100 19.0 100.0

TABLE 2. NONLINEAR ELASTICALLY SUPPORTED BEAMI. NUMBER OF SUBINTERVALS (NSUB)
AND CP TIMES TO SOLVE THE PROBLEM BY SPCOL A'D OBTAIN AN IMPROVEMENT
BY COLSYS. THE CP TIMES FOR SPCOL INCLUDE THE TIME TO CALCULATE THE
REDUCED SOLUTION WHICH WAS 4.8 TIME UNITS. CORRECTION NO. I USES
THE MESH THAT WAS RECOMMENDED BY S1'COL. CORRECTION NO. 2 USES A
MESH THAT IS TWICE AS COARSE. THE TOTAL CP iS-THE SUM OF THE TIMES

FOR THE SPCOL AND COLSYS SOLUTIONS.

COLSYS COLSYS
SPCOL Correction o. I Correction No. 2

Rec. No.
c of NSUB CP NSUB CP Total CP NSUB CP Total CP

I0 - 1 40 4.9 100 ' 12. 0 10.9 80|12"L.1.I| 16.9

S10-2 45 4.9 90 12.0 16.g 78 !8.1 12.9

10O8 55 4.9 110 17.5 22.3 Failed

TABLE 3. NONLINEAR ELASTICALLY SUPPORTED BEAM. DIFFERENCES BETWEEN SPCOL
AND COLSYS SOLUTIONS, WHERE () ( )SPCOL ( )COLSYS1

c Ax3(O) Ay2 (O) Ax3(0) Ay2(0)

10-1 3.3x10 - 1  5.IxlO - 2  6.8x1O-I 3.6xlO- 1

10-2 2.8xi0-2  6.6x10- 3  6.1xl1 - 2  3.9IO- 2 I
10-  2.7x10 4  6.8xlO- 5  6.1X0 4  30.9X
10-8 0 1.3xl10 7 0 0 4
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